
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 1:  Introduction

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu


Nicole Hamilton

Education

BS & MS EE, Stanford, 1973.

MBA, Boston University, 1987.

Background

Arrived here in Fall 2017.

Started my career doing hardware design at 
IBM but quickly moved into software.

Spent most of my career as an entrepreneur 
selling a C shell I wrote for Windows.

When the dot-com collapse hit, I went to 
Microsoft, where I wrote the ranker and query 
language for the first release of what’s now 
the Bing search engine.

Thought I was retired 6 years ago when I 
volunteered to  advise some Capstone teams 
of seniors in EE at University of Washington 
Bothell.  Turned out it paid, I loved it, one 
thing led to another and here I am.

nham@umich.edu
https://web.eecs.umich.edu/~nham/
C:  425-765-9574

Office hours via Zoom
Meeting ID 285-289-4520
MW    4:30 to 6:00 pm EDT

2

mailto:nham@umich.edu
https://web.eecs.umich.edu/%7Enham/


MSN Search in early 2005.
3



Joined the team in July 2003 as 
the ninth member.
The ranker was the last major 
piece no one had taken.
Wrote the ranker and the query 
language for the first release in 
January 2005.
Almost 30 KLOC in C++.

4



5



6



Staff

7

Austin Kiekintveld
akiek

Brandon Kayes
Lab instructor
bkayes

Celine Schluetuer
celinesc

Email sent to eecs482@umich.edu goes to all of us.

mailto:eecs482@umich.edu


Agenda for Today

Why do we need 482?
Course syllabus and logistics

Why do we need an OS and what does it do?
How did OSes evolve to what we have today?

8



482 in EECS Curriculum

9

Ideas

High-Level Code

Machine Instructions

Processors

Gates

EECS 280, 281 (programming)

EECS 483 (compilers)

EECS 370 (comp. organization)

EECS 270 (digital design)



What is missing?
Bootstrap:

How does a computer start when you turn it on?
How to get CPU to start executing a program?

Concurrent execution with I/O:
How to read keyboard or mouse? Print output to screen?
How to run multiple programs without breaking each other?

Persistence and security:
How to save your data when you turn the computer off?
How to prevent other users from accessing your data?

10



What is missing?
Bootstrap:

How does a computer start when you turn it on?
How to get CPU to start executing a program?

Concurrent execution with I/O:
How to read keyboard or mouse? Print output to screen?
How to run multiple programs without breaking each other?

Persistence and security:
How to save your data when you turn the computer off?
How to prevent other users from accessing your data?

11

The OS does all of this.

After this semester, you should 
be able to answer all of these 

questions!



12

Class Material
Class webpage

https://grader2.eecs.umich.edu/eecs482/
Also linked from Canvas

Syllabus, course calendar, slides, homeworks, 
and projects will be posted on class webpage

Subscribe to Piazza
Announcements and class discussion



Lecture Schedule

Cover how OS abstracts H/W resources

Before mid-term: CPU, memory

After mid-term: Network, storage

End with distributed systems and case studies

13



14

Lectures

Lectures are being recorded.
Attendance is not required.
Lecture slides will be posted.

Textbook (highly recommended):
Anderson and Dahlin, “Operating Systems: Principles 
and Practice”



Lab
Fridays 11:30 am to 12:30 pm EDT
Streamed and recorded, details to follow.

Questions to be discussed are posted.
Do them before going to your section
Prepares you for exams

First lab is this Friday.

15



Enrollments
Obviously not full, only one lecture and one lab, 
so there should not be problems with waitlists.

Talk to me if you are retaking this class.

16



Projects
4 projects

Writing a concurrent program
Thread manager
Virtual memory pager
Multi-threaded secure network file system

First one individually, others in groups of 2 or 3
Register your GitHub ID – we’ll assign repositories
Declare your group by May 22
Post to Piazza if you don’t know anyone

17



Projects are HARD!

Probably the hardest class you will take at UM in 
terms of development effort

Projects will take 95% of your time in this class

Reason for being hard:
Not number of lines of code
Instead, new concepts!

18



No 6-credit option this semester
W20 had an optional (experimental) 2-credit 
EECS 498 that could be taken at the same time.

Differences were mostly some advanced 
functionality in the projects.

Due to much smaller enrollment over the 
summer, you can do the advanced features if 
you like but it won’t get you the extra 2 credits.

19



Core vs. advanced features

20

Core project Advanced features
Project 1

Project 2 1 CPU > 1 CPU

Project 3
Process starts with empty 
arena

Process starts with copy of 
parent’s arena

Project 4
Reader/writer locks
Statically allocated locks

Upgradable reader/writer locks
Dynamically allocated locks



Project recommendations
Choose group members carefully

Check schedule, class goals, style, etc.

We’ll evaluate every member’s contributions
Peer feedback
git log and github statistics

Group can fire one of its members (see syllabus)

21



Project recommendations
Do not start working on projects at last minute!

Projects are autograded
Number of hours and number of lines of code don’t count
Testing is integral process of development

Make good use of help available
Office hours get tight near project deadlines
Monitor and participate in discussion on Piazza
Hints during lectures, discussions, and textbook

22



Policies
Submission

1 submission per day to autograder + 3 bonus
Due at 8:00 pm EDT (hard deadline!)
3 late days across all projects

Collaboration
Okay to clarify problem or discuss C++ syntax
Not okay to discuss solutions
Not okay to borrow from past solutions

23



24

Exams

Midterm: June 24, 2020

Final: August 20, 2020

Exams will be conducted online using the 280 
randomized exam server.

Open long enough to accommodate students 
spread across many timezones.



25

Grading breakdown
We will be using normal letter grading.
Expect a curve similar to past semesters.

Projects:
Project 1: 3%
Projects 2, 3, and 4: 15% each

Mid-term and Final: 26% each



Pro tips for success in 482
1. Start early on projects

2. Pick group wisely
Leverage github and communicate with team

3. Take advantage of available help
Go to office hours, post/monitor questions on Piazza

4. Attend lectures and lab sections
Read textbook, solve questions before discussion

5. Ask questions when something is unclear
26



Submit your photo
Have someone take your photo on your phone

https://grader2.eecs.umich.edu/eecs482/self.php

27

https://grader2.eecs.umich.edu/eecs482/self.php


What if applications ran directly on hardware?

Problems?
Portability
Resource sharing

Why have an OS?

28

Applications

Hardware



The operating system is the software layer 
between user applications and the hardware

OS is “all the code that you don’t have to write”
to implement your application

29

What is an OS?

Operating System

Hardware

Applications
Virtual 
Machine 
Interface

Physical 
Machine 
Interface



30

Roles of the OS
Illusionist: Create abstractions to ease use of hardware

CPU  Threads
Memory  Address space

For any area of OS, ask
What interface does hardware present?
What interface does OS present to applications?

Government: Manage shared hardware resources
But at a cost (taxes)



OS and Apps: Perspective 1
Perspective 1: application is main program

Gets services by calling kernel (OS)
Example: Print output to the screen

Problems with this view:
how does application start?
how do tasks occur outside any program?
Example: Receiving network packets

how do multiple programs run simultaneously without 
messing each other up?

31



OS and Apps: Perspective 2
Perspective 2: OS is main program

Calls applications as subroutines
Illusion: every app runs on its own computer

Lower layer (OS) invokes higher layer (apps)!
App or processor returns control to OS

Correct perspective, but what is it that makes the 
OS the “main” program?

32



33

Why take an OS class?
Understanding what you use

Understanding the OS helps you write better apps
Functionality, performance tuning, simplicity, etc.

Universal abstractions and optimizations
Caching, indirection, naming, atomicity, protection,…
Examples: Cloud computing, web services, mobile apps

Mastering concurrency
Performance today achieved through parallelism
Mastery required to be a top-notch developer



Operating Systems Take 1
Single operator at console

Positives:
Interactive
Very simple

Downside:
Poor utilization of hardware

34

time

human I/O CPU I/O human I/O CPU



Operating Systems Take 2
Batch processing

Goal: Improve CPU and I/O utilization by removing user 
interaction

OS is batch monitor + library of standard services
Protection becomes an issue

Why wasn’t this an issue for single operator at console?

35

time
I/O  CPU  I/O  CPU  I/O  CPU



Operating Systems Take 3
Multi-programmed batch

Improve utilization further by overlapping 
CPU and I/O

OS becomes more complex
Runs multiple processes concurrently, 
allowing simultaneous CPU and I/O
Multiple I/Os can take place simultaneously
Protects processes from each other
Still not interactive

36

time

P1:  CPU   I/O

P2:   I/O    CPU

P3:             I/O



Operating Systems Take 4
Time sharing

Goal: Allow people to interact with programs as they run
Insight: User can be modeled as a (very slow) I/O device
Switch between processes while waiting for user

OS is now even more complicated
Lots of simultaneous jobs
Multiple sources of new jobs

37

time

P1: human  CPU  I/O

P2:  CPU  human I/O

P3:              I/O   CPU



History of operating systems
OS started out very simple
Became complex to use hardware efficiently
Today: Personal computers

Is the main assumption (hardware is expensive) still true?

How does this affect OS design?
PCs still need to time share between multiple jobs.
PCs still need protection between multiple jobs.

PCs gradually added back time-sharing features

38



Looking ahead …

OSes continue to evolve
Cloud: Amazon EC2, Microsoft Azure, …
Smartphones: Android, iOS, …

What are the drivers of OS change?
New app requirements
New objectives

39



Things to do …

Browse the course web page

Subscribe to Piazza
Register GitHub ID
Submit photo
Start finding partners for project group

Go to lab section on Friday

40


	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 1:  Introduction
	Nicole Hamilton
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Staff
	Agenda for Today
	482 in EECS Curriculum
	What is missing?
	What is missing?
	Class Material
	Lecture Schedule
	Lectures
	Lab
	Enrollments
	Projects
	Projects are HARD!
	No 6-credit option this semester
	Core vs. advanced features
	Project recommendations
	Project recommendations
	Policies
	Exams
	Grading breakdown
	Pro tips for success in 482
	Submit your photo
	Why have an OS?
	What is an OS?
	Roles of the OS
	OS and Apps: Perspective 1
	OS and Apps: Perspective 2
	Why take an OS class?
	Operating Systems Take 1
	Operating Systems Take 2
	Operating Systems Take 3
	Operating Systems Take 4
	History of operating systems
	Looking ahead …
	Things to do …

